es

Mechanical Characterization of Micro-tissues for Tissue Engineering

Mechanical Characterization of Micro-tissues for Tissue Engineering

Bélgica 31 ago. 2021
KU Leuven

KU Leuven

Universidad Estatal, Examinar oportunidades similares

DETALLES DE LA OPORTUNIDAD

Recompensa total
0 $
Universidad Estatal
Área
País anfitrión
Fecha límite
31 ago. 2021
Nivel de estudio
Tipo de oportunidad
Especialidades
Oportunidad de financiación
No financiación
Países elegibles
Esta oportunidad está destinada a todos los países
Región elegible
Todas las regiones

(ref. BAP-2021-354)

The Particulate Dynamics research group is part of the division Mechatronics, Biostatistics and Sensors at the department of Biosystems Engineering, KU Leuven. We are interested in how complex biological structures such as cells and tissues may emerge from simple interactions between their underlying components. For this, we study the organization dynamics and mechanical properties of cells and cell communities using a combination of mechanical measurements and particle-based computational models. These quantitative models are used to improve our understanding in applications such as the treatment of antibiotic resistance in bacterial biofilms and the production of micro-tissues for bone tissue engineering. The Particulate Dynamics group closely collaborates with the Prometheus division, an interdisciplinary team of engineers and biomedical researchers that develops novel techniques for Bone Tissue Engineering.

Website unit

New tissue engineering strategies rely on the use of small 'microtissues, small semi-autonomous and self-organized cellular assemblies. Acting as small building blocks, larger artificial tissues can be created by combining these micro-tissues using techniques such as bioprinting. The predictable and modular behavior of these micro-tissues render them practicable for application in engineering purposes. However, in order to incorporate micro-tissues in a translational engineering strategy, we need to have adequate ‘living material models’ that take into account the active properties of the underlying cells as they undergo differentiation. The main goal of this project is to develop a practical framework for the mechanical characterization of micro-tissues used for artificial tissue production, an emerging paradigm in the field of tissue engineering.
The applicant will make use of Atomic Force Microscopy (AFM), a high resolution technique that measures local mechanical forces from the deflection of a cantilever. You will perform AFM measurements on micro-tissues from adult progenitors (hPDCs and iPS) at different stages of chondrogenic differentiation. From AFM measurements, you will obtain the apparent visco-elastic properties of the multicellular material, as it changes during development. By comparing these results to computer simulations, you will help reveal the cell-scale properties that are associated with the biological outcome of the engineered tissue.
Moreover, the applicant will quantify the interaction forces between micro-tissues and their environment. For this, you will make use of Traction Force Microscopy (TFM). In TFM, forces between the micro-tissue and the environment are reconstructed based on the displacement of fluorescent beads embedded in the substrate. Based on these AFM and TFM characterizations, you will be able to tune the biomaterials and the parameters of the production process in order to accommodate robust and viable engineered tissues.

You have a Master's degree in Mechanical Engineering, Bioscience Engineering, Biomedical Engineering, (Bio)physics, or equivalent qualifications. You are eager to familiarize yourself with state-of-the-art mechanical characterization techniques such as Atomic Force Microscopy (AFM) and Traction Force Microscopy (TFM). You are interested in the application of engineering techniques in to help bring forward new generation of regenerative medicine technology.

A research position of 4 years,  pending a positive evaluation after one year. You will enroll in the doctoral programme of the Arenberg Doctoral School (ADS) of KU Leuven.

For more information please contact Prof. dr. Bart Smeets, tel.: +32 16 32 85 92, mail: bart.smeets@kuleuven.be.

You can apply for this job no later than August 31, 2021 via the online application tool

KU Leuven seeks to foster an environment where all talents can flourish, regardless of gender, age, cultural background, nationality or impairments. If you have any questions relating to accessibility or support, please contact us at diversiteit.HR@kuleuven.be.

Otras organizaciones


Elige tu destino de estudios


Elige el país al que quieres viajar para estudiar gratis, trabajar o hacer voluntariado

Encuentre también